Publicado em 15 de setembro de 2025 às 14:48
As três leis de Newton, Princípio da Inércia, Princípio Fundamental da Dinâmica e Princípio da Ação e Reação, são a base da Mecânica Clássica. Por meio delas, a dinâmica dos corpos (comportamento dos corpos e a ação das forças que produzem ou modificam os movimentos) pode ser descrita de forma aprofundada. A seguir, conheça a fundo essas três leis. >
É aquela famosa história que Newton estava sob uma macieira quando dela caiu uma maçã sobre a sua cabeça. Fez com que Newton explorasse o mistério pelo qual a Lua não cai sobre a Terra, descrevendo uma equação matemática com a qual descobriu (a partir das Leis de Kepler) que os corpos se atraem mutuamente, fazendo com que não caiam uns sobre os outros e sempre mantenham a trajetória, ou seja, a sua órbita elíptica ao redor do Sol. >
Constituem, ainda, os três pilares fundamentais do que chamamos Mecânica Clássica ou Mecânica Newtoniana as leis: >
Um corpo em repouso tende a permanecer em repouso, e um corpo em movimento tende a permanecer em movimento. Exemplo: quando estamos em um carro em movimento e este freia repentinamente, nos sentimos como se fôssemos atirados para frente, pois nosso corpo tende a continuar em movimento. >
Esse e vários outros efeitos semelhantes são explicados pelo Princípio da Inércia. Então, conclui-se que um corpo só altera seu estado de inércia se alguém ou algo aplicar nele uma força resultante diferente de zero. >
Quando aplicamos uma mesma força em dois corpos de massas diferentes, observamos que elas não produzem aceleração igual. A 2ª Lei de Newton diz que a Força (F) é sempre diretamente proporcional ao produto de aceleração (a) de um corpo pela sua massa (m), ou seja: F = m.a. >
Força: é uma interação entre dois corpos. Para compreendê-la, podemos nos basear em efeitos causados por ela, como aceleração, deformação etc. >
Aceleração: faz com que o corpo altere sua velocidade quando uma força é aplicada. >
Deformação: faz com que o corpo mude seu formato quando sofre a ação de uma força. >
Força resultante: é a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. A unidade de força, no sistema internacional (S.I), é o N (Newton), que equivale a Kg m/s² (quilograma metro por segundo ao quadrado). >
As forças atuam sempre em pares. Para toda força de ação, existe uma força de reação.Quando uma pessoa empurra um objeto com uma força (F), podemos dizer que esta é força de ação, mas, conforme a 3ª Lei de Newton, sempre que isso ocorre, há outra força com módulo e direções iguais, com sentido oposto à força de ação, chamada força de reação. >
Quando falamos em movimento vertical, introduzimos um conceito de aceleração da gravidade, que sempre atua no sentido a aproximar os corpos em relação à superfície. Relacionando com a 2ª Lei de Newton, se um corpo de massa m sofre a aceleração da gravidade, quando aplicada a ele o Princípio Fundamental da Dinâmica, poderemos dizer que: F = m . g ou P = m . g. >
O peso de um corpo é a força com que a Terra o atrai, podendo ser variável, quando a gravidade variar. A massa (m) de um corpo, por sua vez, é constante, ou seja, não varia. A unidade que trata de Força Peso é o quilograma-força: 1kgf é o peso de um corpo de massa 1kg submetido à aceleração da gravidade de 9,8m/s² (Terra). >
Atenção: quando falamos no peso de algum corpo, lembramos do “peso” medido na balança. Mas este é um termo fisicamente errado, o que estamos medindo neste caso é a nossa massa. Analisando um corpo que se encontra sob uma superfície plana, verificamos a atuação das duas forças: Peso (P) e Normal (N). Para que este corpo esteja em equilíbrio, ou seja, não se movimente ou não altere sua velocidade, é necessário que os módulos das forças Normal e Peso sejam iguais; assim, atuando em sentidos opostos, elas se anularão. >
Exercida pela superfície sobre o corpo, podendo ser interpretada como a sua resistência em sofrer deformação devido ao peso do corpo. Esta força sempre atua no sentido perpendicular à superfície, diferentemente da Força Peso, que atua sempre no sentido vertical. >
A Força de Atrito se opõe ao movimento. Depende da natureza e da rugosidade da superfície (coeficiente de atrito) e é proporcional à força normal de cada corpo. Transforma a energia cinética do corpo em outro tipo de energia (calor ou som) que é liberada ao meio. É calculada pela seguinte relação: Fat = μ . N. >
Quando empurramos um carro, observamos que, até o carro entrar em movimento, é necessário que se aplique uma força maior do que a força necessária quando o carro já está em movimento. Isso acontece, pois existem dois tipos de atrito: o estático (parado) e o dinâmico (movimento). >
Atrito Estático: atua quando não há deslizamento dos corpos. A força de atrito estático máxima é igual à força mínima necessária para iniciar o movimento de um corpo. Neste caso, é usado no cálculo um coeficiente de atrito estático (μest): F atest = μ est .N. >
Atrito Dinâmico: atua quando há deslizamento dos corpos. Quando a força de atritoestático for ultrapassada pela força aplicada ao corpo, este entrará em movimento, e passaremos a considerar sua força de atrito dinâmico. No seu cálculo, é utilizado o coeficiente de atrito cinético (μd): Fatd = μd . N. >
Quando um corpo efetua um Movimento Circular, sofre uma aceleração que é responsável pela mudança da direção do movimento, a qual chamamos aceleração centrípeta. A equação da Força Centrípeta é: F cp = m . a cp . >
Sabendo que existe uma aceleração e sendo dada a massa do corpo, podemos, pela 2ª Lei de Newton, calcular uma força (centrípeta) que, assim como a aceleração centrípeta, aponta para o centro da trajetória circular. Sem a Força Centrípeta, um corpo não poderia executar um movimento circular. >
Quando o movimento for circular uniforme (MCU), a aceleração centrípeta é constante, portanto a força centrípeta também é constante. A força centrípeta é a resultante das forças que agem sobre o corpo, com direção perpendicular à trajetória. >
Quando aplicamos uma força F em uma mola presa em uma das extremidades a um suporte e em estado de repouso (sem ação de nenhuma força), a mola tende a deformar (esticar ou comprimir, dependendo do sentido da força aplicada). Robert Hooke (1635-1703) estudou que a deformação da mola aumenta proporcionalmente à força. Daí estabeleceu-se a seguinte Lei de Hooke: >
A constante elástica da mola (k) depende principalmente da natureza do material de fabricação da mola e de suas dimensões. Sua unidade mais comum é o N/m (Newton por metro). >
Por Tao Consult >